

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 4465-4468

Tetrahedron Letters

Regioselective bromination of aromatic compounds with Br₂/SO₂Cl₂ over microporous catalysts

Jallal M. Gnaim^{a,*} and Roger A. Sheldon^b

^aDepartment of Chemistry, The Triangle Regional R&D Center, PO Box 2167, Kfar-Qari 30075, Israel ^bDepartment of Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands

Received 6 March 2005; revised 4 April 2005; accepted 26 April 2005 Available online 17 May 2005

Abstract—A new selective brominating system $Br_2/SO_2Cl_2/zeolite$, has been discovered. Partially cation-exchanged Ca^{2^+} -Y zeolite efficiently catalyzes the selective *para*-bromination of neat chlorobenzene (CB) by Br_2/SO_2Cl_2 affording a CB conversion of \sim 89% and a *para*-selectivity of \sim 97%. During the bromination reaction, SO_2Cl_2 oxidizes HBr, prevents its accumulation within the zeolite pores and yields a more active brominating species. The Ca^{2^+} -Y catalyst was found to be stable under the bromination conditions, and can easily be regenerated by calcination. The $Br_2/SO_2Cl_2/Ca^{2^+}$ -Y brominating system could be applicable to other activated aromatic compounds such as *o*-xylene, toluene and fluorobenzene. © 2005 Elsevier Ltd. All rights reserved.

The manufacture of many bulk and fine chemicals involves bromination of aromatics. Various methods have been developed and reported for the bromination of aromatic systems using a variety of brominating agents under various reaction conditions. Some of these methods involve the use of Br₂/Lewis acids, Br₂/SbF₃/HF, NBS/H₂SO₄/CF₃CO₂H, NBS/PTSA, NBS/NaOH, NBS in ionic liquids, HBr/tert-BuOOH, HBr/H₂O₂, HBr/DMSO, NH₄Br/H₂O₂/CH₃COOH, quaternary ammonium tribromide, RBrO₃, KBr/sodium tungstate/H₂O₂, hexamethylene tetramine tribromide, pyridinium hydrobromide perbromide, NaBr/Oxone, KBr/Oxone, KBr/H₂O₂/Oxone, CuBr₂/t-BuO-NO, sodium monobromoisocyanurate and the catalytic oxidation of bromide ions.

Numerous methods have also been proposed to increase the yield and the selectivity of the *para*-bromo isomer, which has greater commercial significance.^{21–27} In particular, zeolites have attracted much attention of organic chemists over the last two decades. Due to their regular microporous structure they proved to be useful as a tool

for reaction control in organic synthesis.²⁸ The zeolite-catalyzed bromination of aromatics is highly selective at low conversions, however, a decrease in selectivity and reaction rate were observed with the progress of the reaction.²⁹ The main factor responsible for decreasing the selectivity of the bromination was the effect of HBr, which was liberated during the reaction, on the structure of the zeolite catalyst.³⁰ One way to increase both the activity and the selectivity of the zeolite-catalyzed bromination is to remove the HBr by using various scavengers and oxidants such as inorganic salts,^{31,32} organic bases, alcohols and carboxylic acids,³³ oxiranes³⁴ and oxygen.³⁵ In this communication, we report an efficient procedure for the *para*-bromination of halo- and alkyl-benzenes using a new brominating system Br₂/SO₂Cl₂, with the aid of microporous catalysts.

In the absence of catalyst, neat chlorobenzene (CB) was very slowly monobrominated with Br_2 with a molar ratio of 2:1 at 25 °C and at 100 °C, giving after 24 h, CB conversions of \sim 0.2% and \sim 16%, respectively (Table 1, runs 1 and 2). The rate and the isomer distribution obtained in the bromination varied significantly when the reaction was conducted in the presence of a catalytic amount of Lewis acid catalysts, such as AlCl₃ and FeCl₃ (runs 3 and 4). The relatively high conversions and selectivities were attributed to the effect of polarizing the bromine molecule and consequently enhancing its electrophilicity.^{1,2}

Keywords: Bromination; Catalysis; Aromatics; Chlorobenzene; Bromine; Sulfuryl chloride; Regioselectivity; Heterogeneous catalyst; Zeolites; Clays; Cation-exchange.

^{*} Corresponding author. Tel./fax: +972 4 638 4650; e-mail: jallal_g@ zahav.net.il

Table 1. Bromination of chlorobenzene (CB) with Br₂ in the presence of various catalysts^a

Run no.	Catalyst	CB Conversion (mol %)	Selectivity (mol %)		
			p-BCB ^b	o-BCB ^b	p/o Ratio
1	None	Traces	_	_	_
2	None	15.6 ^c	89.1	10.9	8.2
3	AlCl ₃ ^d	49.5	93.6	6.4	14.6
4	FeCl ₃ ^d	50.0	89.9	10.1	8.9
5	Zeolite X	13.5	98.4	1.6	61.5
6	LZ-Y82	35.8	93.7	6.3	14.9
7	Ca ²⁺ -Y ^e	45.3	89.6	10.4	8.6
8	Ce ³⁺ -Y	46.0	96.1	3.9	24.6
9	Fe ³⁺ -Y	46.5	84.0	16.0	5.3
10	$Zn^{2+}-Y$	47.3	87.5	12.5	7.0
11	Ni ²⁺ -Y	47.4	89.5	10.5	8.5
12	Cu ²⁺ -Y	48.1	90.3	9.7	9.3
13	Cu ²⁺ -X	50.0	90.6	9.4	9.6

^a See note 35 for conditions.

The combination of high Brønsted acidity and interlamellar spaces present in aluminosilicate structures make them good candidates as chemo- and regio-selective catalysts in electrophilic substitution of aromatics. Therefore, we tested several types of microporous catalysts such as SiO₂, Al₂O₃, zeolite 3A, 4A, Y, mordenite, X, LZ-Y82, KSF clay and K10 clay, in the bromination of CB with Br₂. The results show that CB conversions and para-selectivities were improved compared to those of the control reaction. For example, the large-pore size zeolite X and zeolite LZ-Y82 catalyze the bromination of CB with Br₂, affording CB conversions of ~14% and $\sim 36\%$, and para-selectivities of $\sim 98\%$ and $\sim 94\%$, respectively (runs 5 and 6). These results also indicate that larger-pore size zeolites are superior catalysts to the smaller ones. This is probably due to the inability of the reactants to diffuse through the channels of the small-pore size zeolites and/or the small space available in these structures may not be able to accommodate the bulky transition state of the bromine-CB reaction.

A large number of clays and zeolites supported with metal cations such as Na⁺, K⁺, Cs⁺, Ca²⁺, Ba²⁺, Cu²⁺, Co²⁺, Ce³⁺, Al³⁺, Fe³⁺, Zn²⁺, Mg²⁺ and Ni²⁺, were prepared³⁷ and their catalytic properties were examined in the bromination of CB. The following observations can be made: (1) great improvements of the CB conversions were observed, for example by using Cu²⁺-X catalyst, a 50% CB conversion was achieved at 25 °C (run 13); (2) the catalytic performance of the various partially cation-exchanged zeolites are strongly dependent on the type of the zeolite and the charge and size of the cation used; (3) the most active and *para*-selective of the cation-exchanged catalysts studied was Ce³⁺-Y, which afforded a CB conversion of ~46% and a *para*-selectivity of ~96%, that is a *paralortho* ratio of ~25 (run 8) and (4) the selectivity of the bromination was higher at low conversions and slightly decreased with the progress of the reaction.

Table 2. Bromination of CB with Br₂/SO₂Cl₂ in the presence of various catalysts^a

Run no.	Catalyst ^b	CB Conversion (mol %)	Selectivity (mol %)		
			p-BCB	o-BCB	p/o Ratio
1	Co ²⁺ -X	63.0	89.1	10.9	8.2
2	Ni ²⁺ -Y	63.0	93.0	7.0	13.3
3	Mg^{2+} -Y	68.1	94.2	5.8	16.2
4	Cu ²⁺ -Y	73.6	93.8	6.2	15.1
5	Co ²⁺ -Y	82.8	92.8	7.2	12.9
6	Ce ³⁺ -Y	86.0	96.9	3.1	31.3
7	$Zn^{2+}-Y$	86.5	92.7	7.3	12.7
8	Cu ²⁺ -X	88.7	93.1	6.9	13.5
9	Ca ²⁺ -Y	89.2	96.7	3.3	29.3

^a See note 38 for conditions.

Next we turned our attention to the bromination of CB with SO_2Cl_2/Br_2 in the presence of the cation-exchanged zeolites X and Y. The results are shown in Table 2. The observed reaction rates, CB conversions and *para*-selectivities were substantially improved in comparison with the corresponding values obtained using only Br_2 under the same conditions. With Ca^{2+} -Y and Ce^{3+} -Y catalysts, $\sim 89\%$ and $\sim 86\%$ CB conversions, and $\sim 97\%$ and $\sim 97\%$ *para*-selectivities were achieved, respectively (runs 6 and 9). These observations suggest that probably the mechanism of the Br_2/SO_2Cl_2 -reaction is different from that of the Br_2 -reaction. Despite the presence of SO_2Cl_2 in the reaction mixture, no chlorination products were observed.

In a continuous bromination experiment, a mixture of CB, Br₂ and SO₂Cl₂ with a 2:1:1 molar ratio was passed through a glass column containing solid Ca²⁺-Y catalyst at 25 °C for a contact period of 2 h. The resulting reaction mixture was analyzed and showed an ~85% CB conversion and a ~96% para-selectivity. Interestingly, by decreasing the amount of the Ca²⁺-Y catalyst 10-fold under the same reaction conditions, the para-selectivity of the bromination was almost unchanged, that is, ~97% and ~96%, respectively. The [catalyst (g)/substrate (mmol)] ratio in our present study (0.2 g catalyst per 40 mmol substrate) is less than 0.005 g/ mmol, which is lower than those (0.1–1.5 g/mmol) of previous work. 30,31,33,34,41

A typical reaction profile of the bromination of CB using Br₂/SO₂Cl₂ and Ca²⁺-Y zeolite indicates that the *paralortho* ratio is almost constant during the course of the reaction. The effect of the calcination temperature of the Ca²⁺-Y zeolite on the bromination of CB was also examined. The optimum activity of the catalyst, which corresponded with the maximum Brønsted acidity, was obtained after calcination at about 400 °C. Preliminary results showed that the Ca²⁺-Y zeolite catalyst, which was regenerated by washing with deionized water, drying at 110 °C and then reactivation at 400 °C, retained its catalytic activity.

The cation-exchanged reaction of Na⁺-Y with an aqueous solution of CaCl₂ yielded the corresponding Ca²⁺-Y zeolite (~3.6 mass% of Ca, which is ~0.9 mmol of Ca in

b p-BCB: para-bromochlorobenzene; o-BCB: ortho-bromochlorobenzene.

 $^{^{\}rm c}$ The reaction was carried out at 100 °C.

^d The amounts of AlCl₃ and FeCl₃ catalyst used were 0.7 and 0.8 g, respectively.

e See note 36.

^b See note 36.

1.0 g zeolite, i.e., \sim 52% of the Na content was exchanged with Ca) without affecting the original Si/Al ratio (\sim 2.7), that is, no dealumination of the zeolite had occurred. A comparison of the Na/Si ratio, Na/Al ratio and the amount of Ca in the original Ca²⁺-Y zeolite (0.11, 0.28 and 0.90 mass %, respectively) with that of the recovered Ca²⁺-Y zeolite (0.11, 0.32 and 0.90 mass %, respectively) indicates that there are only very slight structural variations. The stability of the Ca²⁺-Y zeolite under the bromination conditions was also confirmed by analyzing the IR spectra and the X-ray diffractograms of the Na⁺-Y, Ca²⁺-Y and the recovered Ca²⁺-Y zeolites.

 $SO_2Cl_2^{39-41}$ may react with Br_2 in the presence of zeolite to give BrCl and SO_2 (Eq. 1), in a similar way to the reaction of Cl_2 with Br_2 (Eq. 2). On the other hand, SO_2Cl_2 may also react with HBr to afford Br_2 , HCl and SO_2 as shown in Eq. 3. In both cases a new brominating agent is formed, that is BrCl or Br_2 , as a result of redox reactions, and regeneration of the Br atoms.

$$SO_2Cl_2(l) + Br_2(l) \rightarrow 2BrCl(l) + SO_2(g)$$
 (1)

$$Cl_2(g) + Br_2(1) \rightarrow 2BrCl(1)$$
 (2)

$$SO_2Cl_2(l) + 2HBr(g) \rightarrow Br_2(l) + 2HCl(g) + SO_2(g)$$
(3)

The Br₂/SO₂Cl₂/Ca²⁺-Y catalytic system was applied in the bromination of other aromatic compounds. Under optimum conditions, o-xylene or toluene or fluorobenzene were brominated using Br₂/SO₂Cl₂ with a 2:1:1 molar ratio in the presence of a catalytic amount of Ca²⁺-Y catalyst at 25 °C for 3 h. Bromo-o-xylenes, bromotoluenes and bromofluorobenzenes were produced with \sim 99%, \sim 83 % and \sim 90% substrate conversions and $\sim 92\%$, $\sim 85\%$ and $\sim 99\%$ para-selectivities, respectively. These preliminary results clearly demonstrate the generality of our heterogeneous catalytic system in the regioselective para-bromination of activated aromatic compounds, and they are sufficiently promising to encourage further study such as poisoning the outer active acidic sites of the Ca²⁺-Y zeolite by bulky and hydrophobic substituents, in order to enhance further the selectivity of the catalyst.

Acknowledgements

We thank Coalite Chemicals, UK; and J.M.G. thanks the Ministry of Science and Technology in Israel for financial support.

References and notes

1. Electrophilic Aromatic Substitution; Taylor, R., Ed.; John Wiley & Sons: Chichester, 1990.

- de la Mare, P. B. Electrophilic Halogenation; Cambridge University Press: Cambridge, 1976.
- 3. Schmid, H. Helv. Chim. Acta 1946, 29, 1144-1151.
- 4. Jacquesy, J.; Jouannetaud, M.; Makani, S. *J. Chem. Soc. Commun.* **1980**, 110–111.
- Duan, J.; Zhang, L. H.; Dolbier, W. R., Jr. Synlett 1999, 1245–1246.
- Adhikari, M. V.; Samant, S. D. Ultrason. Sonochem. 2002, 9, 107–111.
- Auerbach, J.; Weissman, S. A.; Blacklock, T. J. Tetrahedron Lett. 1993, 34, 931.
- 8. Yadav, J. S.; Reddy, B. V. S.; Reddy, P. S. R.; Basak, A. K.; Narsaiah, A. V. Adv. Synth. Catal **2004**, 346, 77–82.
- Barhate, N. B.; Gajare, A. S.; Wakharkar, R. D.; Bedekar, A. V. Tetrahedron Lett. 1998, 39, 6349–6350.
- Majetich, G.; Hicks, R.; Reister, S. J. Org. Chem. 1997, 62, 4321–4326.
- Mohan, K. V. V. K.; Narender, N.; Srinivasu, P.; Kulkarni, S. J.; Ragavan, K. V. Synth. Commun. 2004, 34, 2143–2152.
- Chaudhuri, M. K.; Khan, A. T.; Mandal, G. C. Tetrahedron Lett. 1998, 39, 8163–8166.
- 13. Groweiss, A. Org. Proc. Res. Dev. 2000, 4, 30.
- Bandgar, B. P.; Nigal, N. J. Synth. Commun. 1998, 28, 3225
- 15. Bisarya, S. C.; Rao, R. Synth. Commun. 1993, 23, 779.
- Reeves, W. P.; Lu, C. V.; Russel, J. S. Organometallics 1993, 12, 2487.
- Narender, N.; Srinivasu, P.; Prasad, S. J.; Kulkarni, S. J.;
 Ragavan, K. V. Synth. Commun. 2002, 32, 2313–2318.
- Doyle, M. P.; Van Lente, M. A.; Mowat, R.; Fobare, W. F. J. Org. Chem. 1980, 45, 2570–2575.
- Okada, Y.; Yokozawa, M.; Akiba, M.; Oishi, K.; O-kawa, K.; Akeboshi, T.; Kawamura, Y.; Inokuma, S.; Nakamura, Y.; Nishimura, J. Org. Biomol. Chem. 2003, 1, 2506–2511.
- Clague, M. J.; Butler, A. J. Am. Chem. Soc. 1995, 117, 3475.
- Ranu, B. C.; Sarkar, D. C.; Chakraborty, R. Synth. Commun. 1992, 22, 1095–1099.
- Smith, K.; El-Hiti, G. A.; Hammond, M. E. W.; Bahzad, D.; Li, Z.; Siquet, C. J. Chem. Soc., Perkin Trans. 1 2000, 2745–2752.
- 23. Goldberg, Y.; Alper, H. J. Mol. Cat. 1994, 88, 377-384.
- Paul, V.; Sudalai, A.; Daniel, T.; Srinivasan, K. V. Tetrahedron Lett. 1994, 35, 7055-7056.
- 25. March, J. *Advanced Organic Chemistry*, 3rd ed.; Wiley-Interscience: New York, 1985; pp 476–479.
- 26. Yaroslavsky, C. Tetrahedron Lett. 1974, 38, 3395–3396.
- de la Vega, F.; Sasson, Y.; Huddersman, K. Zeolites 1991, 11, 617–621.
- Advanced Zeolite Science and Application; Jansen, J. C., Karge, H. G., Weitkamp, J., Eds.; Studies in Surface Science and Catalysis; Elsevier: Amsterdam, 1994; Vol. 85.
- Huizinga, T.; Scholten, J. J. F.; Wortel, T. M.; van Bekkum, H. *Tetrahedron Lett.* 1980, 21, 3809– 3812.
- Smith, K.; Bahzad, D. J. Chem. Soc., Chem. Commun. 1996, 467–468.
- Wortel, T. M.; Oudijn, D.; Vleugel, C. J.; Roelofsen, D. P.; Van Bekkum, H. J. Catal. 1979, 60, 110–120.
- Miyake, T.; Sekizawa, K.; Hironaka, T.; Nakano, M.; Fujii, M.; Tsutsumi, Y. In New Developments in Zeolite Science and Technology In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, 1986; Vol. 28, pp 747– 754.
- 33. Onaka, M.; Izumi, Y. Chem. Lett. 1984, 2007-2008.
- 34. de la Vega, F.; Sasson, Y. J. Chem. Soc., Chem. Commun. 1989, 653–654.

- 35. Bromination of chlorobenzene with Br₂: To a mixture of chlorobenzene (11.3 g, 100 mmol) and the appropriate solid catalyst (2.0 g) gently stirred in a 100 mL round bottom flask, was added Br₂ (20 mmol) at 25 °C. The mixture was stirred at rt for 24 h in a system protected from atmospheric moisture. The solid catalyst was filtered off and washed with CCl₄ (25 mL). The combined organic solution was treated with 30% aqueous solution of NaHSO₃ (25 mL) to neutralize excess Br₂. The organic layer was washed with water, separated and dried over anhydrous MgSO₄. The total volume of the solution was made up to 100 mL, and nitrobenzene (2.46 g, 20 mmol) as an internal standard, was added. A sample of the resultant solution was then drawn out and analyzed by GLC using a Packard instrument Model 417, equipped with F.I.D. coupled to an SP4290 integrator. The glass column (6 ft, 1.5 mm) was packed with 10% SP2401 on Supelcoport 100/120. The operating conditions were: detector temp 250 °C, injector temp 250 °C, carrier gas argon, oven temp 70 °C, ramp rate 5 °C/min, final temp 220 °C and sample size 0.2 µL. Products were identified by comparing retention times with those of authentic samples. Nitrobenzene was used as the internal standard. The compound were
- eluted in the following order: CB, nitrobenzene, p-BCB and o-BCB.
- 36. Preparation of cation-exchanged clays and zeolites: The sodium form of the clay or the zeolite (10 g), was suspended in an aqueous solution (100 mL, 1.0 M) of the metal salt. The mixture was stirred at 25 °C for 24 h. The solid was separated by centrifugation and washed several times with deionized water. The resulting solid was dried overnight at 110 °C and calcined at 400 °C for 12 h.
- 37. Scott, J. Zeolite Technology and Applications, Recent Advances; Noyes Data Corp.: NJ, 1980.
- 38. Bromination of chlorobenzene with Br₂/SO₂Cl₂: To a mixture of chlorobenzene (11.3 g, 100 mmol) and the appropriate solid catalyst (2.0 g), was added a mixture of Br₂ (20 mmol) and SO₂Cl₂ (20 mmol) at 25 °C. The mixture was stirred at this temperature for 24 h. Workup of the reaction mixture and GLC analysis were performed as described in note 35.
- 39. Delaude, L.; Laszlo, P. *J. Org. Chem.* **1990**, *50*, 5260–5269.
- 40. Watson, W. D. J. Org. Chem. 1985, 55, 2145-2148.
- Gnaim, J. M.; Sheldon, R. A. Tetrahedron Lett. 2004, 45, 9397–9399.